Energy minimization-based analysis of electrowetting for microelectronics cooling applications
نویسندگان
چکیده
Electrowetting (EW)-induced droplet motion has been studied over the last decade in view of its promising applications in the field of microfluidics. The objective of the present work is to analyze the physics underlying two specific EW-based applications for microelectronics thermal management. The first of these involves heat absorption by liquid droplets moving on the surface of a chip under EW actuation. Droplet motion between two flat plates under the influence of an electrowetting voltage is analyzed. An energy minimization framework is employed to predict the actuation force on a droplet. This framework, in combination with semi-analytical models for the forces opposing droplet motion, is used to develop a model that predicts transient EW-induced droplet motion. The second application is targeted at hot-spot thermal management and relies on the control of droplet states on artificially structured surfaces through an applied EW voltage. The influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface is analyzed. An energy minimization-based modeling approach reveals the influence of interfacial energies, surface roughness parameters and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The model is used to establish preliminary criteria to design rough surfaces for use in the hot-spot mitigation application. The concept of an electrically tunable thermal resistance switch for hot-spot cooling applications is introduced and analyzed. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Characterization of the heat transfer accompanying electrowetting or gravity-induced droplet motion
Electrowetting (EW) involves the actuation of liquid droplets using electric fields and has been demonstrated as a powerful tool for initiating and controlling droplet-based microfluidic operations such as droplet transport, generation, splitting, merging and mixing. The heat transfer resulting from EWinduced droplet actuation has, however, remained largely unexplored owing to several challenge...
متن کاملCharacterization of the Heat Transfer Accompanying Electrowetting-Induced Droplet Motion
Electrowetting (EW) involves the actuation of liquid droplets using electric fields and has been demonstrated as a powerful tool for initiating and controlling droplet-based microfluidic operations such as droplet transport, generation, splitting, merging and mixing. The heat transfer resulting from EW-induced droplet actuation has, however, remained largely unexplored owing to several challeng...
متن کاملEnergy-Based Model for Electrowetting-Induced Droplet Actuation
Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict overall performance of EW syste...
متن کاملAn energy-based model for electrowetting-induced droplet actuation
Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict the overall performance of EW s...
متن کاملEvaporative heat transfer from an electrowetted liquid ribbon on a heated substrate
Evaporation of narrow water ribbons (of 5 and 7 lL volume) formed on a heated surface is investigated. Chemical and structural patterning of a silicon substrate is employed to fabricate a hydrophilic stripe that bisects hydrophobic pillar arrays of varied geometric roughness. Electrical heating of a 100 nm titanium layer on the back side of the device provides a constant heat flux. In the absen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Journal
دوره 39 شماره
صفحات -
تاریخ انتشار 2008